Koç University Social Policy Center Turkey

Koç University Social Policy Center (KÜ-SPM) was established in April 2010. We began our journey with the aims of developing research and applied research projects on social policy and increasing public awareness on social policy issues in Turkey.

In Turkey the field of social policies is a vast arena where citizens frequently interact with state institutions, where service exchanges and the practical use of social rights occur. Yet it is also a space in which hierarchies, contention, unmet demands and inequalities reside. In KÜ-SPM, our purpose is to increase our accumulation of scientific knowledge and experience through field research, scientific meetings, cooperative implementation projects with stakeholders and through policy analyses. We aim to strengthen the channels of communication on social policy issues between official institutions and policy-makers; advocacy, expert and other NGOs; service-receiving citizens and the academia. As social scientists interested in this field of inquiry, we value social policy-making based on scientific evidence and on the analysis of that evidence.

We can summarize what sort of research has so far been completed within our center with reference to the research topics of scholars in our executive and advisory boards:

  • Types of employment, livelihood strategies, ways of dealing with economic crises in Turkey;
  • Citizenship capacities in terms of distribution of income and habits of tax-paying;
  • Gender inequalities, gender studies, participation of women in employment and other spheres of life;
  • Youth studies, education-employment transition in young people;
  • Factors influencing school access, attendance and success of children in basic education and secondary education;
  • Studies on the development of pre-school children;
  • Socio-economic exclusion;
  • Health reform, social security reform, social services and social assistance services;
  • Rights of people with disabilities and their social inclusion;
  • Urban sociology and urban transformation;
  • Irregular migration, refugees, internal displacement;
  • Communication, media technologies, social policy studies on the protection of intellectual property rights and of privacy rights.

Our research center is always open to collaborations of knowledge production and implementation with social policy-making and policy-implementing governmental bodies, other universities, municipalities, NGOs working on social policy-related issues, EU and UN institutions and other stakeholders.

Within KÜ-SPM, located in Koç University’s Rumelifeneri Campus, there are 7 social scientists (Executive Board) and 2 researchers employed as administrative staff.

Organisation Type
Mr Emrah Göker
Mr Emrah Göker
LinkedIn logo Senior Project Development Specialist 
Area of Interest

KORA- Center for Black Sea and Central Asia Turkey

Organisation Type
Ms Zelal Ozdemir
Research Assistant 

KORA- Center for Black Sea and Central Asia Turkey

KORA (Center for Black Sea and Central Asia) was established in 1992 at the Middle East Technical University in Ankara. KORA is a regional research center with an emphasis on the Black Sea and Central Asian states. Since its establishment, KORA has accumulated experience in the development of research projects, organization of workshops and conferences on its region of concern. 

The Center is the first Turkish coordinator of FP project in social sciences and has participated several other FP projects on European neighborhood, border security, global migration, religious-based organizations, etc.  

The Center is keen on being a partner in a consortium for the call SSH.2013.5.1-2 Addressing demand in anti-trafficking efforts and policies. Our Center has conducted various international projects on human trafficking (supported UNDP, ILO, etc.), which constitutes an important problem for Turkey as a transit country.  

Organisation Type
Ms Gokten Dogangun
Research Assistant 

Kozminski University Poland

Kozminski University, located in Warsaw, Poland, founded in 1993, is a private institution of higher education with full academic rights. Kozminski University is classified in the prestigious educational rankings provided by the ‘Financial Times’ – Business School rankings, which include the best universities from around the world. Kozminski University holds three international accreditations: EQUIS, AMBA and AACSB.The University holds the rights to award doctoral degrees in three disciplines: management, economics and law. Morover, it has the power to authorize a higher Ph.D. degree (habilitation degree) in the discipline of management and economics.

Organisation Type
Professor Anna Olejniczuk-Merta
Professor Anna Olejniczuk-Merta
profesor 
Area of Interest

Kozminski University Poland

Kozminski University, located in Warsaw, Poland, founded in 1993, is a private institution of higher education with full academic rights.

Kozminski University is classified in the prestigious educational rankings provided by the ‘Financial Times’ – Business School rankings, which include the best universities from around the world. Kozminski University holds three international accreditations: EQUIS, AMBA and AACSB.

The University holds the rights to award doctoral degrees in three disciplines: management, economics and law. Morover, it has the power to authorize a higher Ph.D. degree (habilitation degree) in the discipline of management and economics.

Organisation Type
Dr Grzegorz Mazurek
Dr Grzegorz Mazurek
dr 
Area of Interest

Latvian Academy of Sciences Latvia

Dr Ieva Brence
Dr Ieva Brence
LinkedIn logo Project coordinator 
Area of Interest

Life Supporting Technologies Spain

Life Supporting Technologies (LifeSTech) is a research, development and innovation group, belonging to the Universidad Politécnica de Madrid (UPM) and dedicated to design, development and evaluation of services and applications based on ICT (Information and Communication Technologies), in order to create and promote new ideas, methods and technological solutions in every aspect of the value chain of organizations. We develop methods and technological solutions in the areas of:
  • e-Health
  • e-Inclusion
  • e-Learning
  • e-Government
The UPM, is one of the largest universities in Europe. UPM conducts leading technological research in multiple fields. We are one of the largest e-Health research centers in Spain and maintain partnerships within the public and private sectors in the areas of research and development. Over the last fifteen years, we have participated in more than thirty European projects funded by several EU Research Programs (AIM, RACE, TIDE, BRITE, Telematics Applications, eTEN, Leonardo, Quality of Life and IST), as well as in many projects funded by the Spanish Research Council and the R&D Program of the Madrid Community. We are also sponsored by a variety of private Spanish and European companies.
Mr Matteo Pastorino
LinkedIn logo Researcher 
Area of Interest

Likya Teknoloji Turkey

Likya Teknoloji is a Software Development and IT Consultancy company based in Istanbul, Turkey. Likya Teknoloji specialized in IT workload automation and data mining. IT Automation services include solutions and consultancy for automating IT tasks and processes in various IT environments. Likya Teknoloji develops and sells an IT Job Scheduling and Workload Automation software called Tlos. Data Mining services include handlinga and processing of big data in complex business environments, business intelligence and business analytics, reporting, and design and development of data warehouses and ETL systems. R&D activities include enterprise level software design and development utilizing Java, XML, Web 2.0 and database technologies.

Organisation Type
Mr Ender Oztas
Mr Ender Oztas
LinkedIn logo Managing Director 
Area of Interest

Liverpool Logistics Offshore and Marine Research Institute (LOOM) United Kingdom

The LOOM Research Institute within Liverpool John Moores University (LJMU) has 12 academic staff and 25 researchers. LOOM has developed a strong reputation for its safety, security, simulation and optimisation research of maritime system design and operation.

LOOM has completed a number of research projects supported by the UK research councils (eg. EPSRC), HSE, EU and industry. It is equipped with the UK’s only 360 degree ship simulator and a wide range of risk modelling and decision making software. For the last ten years, the Institute has received the funding of multi-million pounds to conduct its high-level research and consequently, over 100 technical papers in relevant areas have been produced. The research applications have also been facilitated by the collaboration between LOOM and many industrial and regulatory organisations including Shell and UK HSE. The institute is the coordinator of one EU Marie Curie project, the workpackage leaders of two ongoing EU projects, and grant holders of many other UK research council projects.

Collaboration interests:

 

We are interested in collaborations with research partners in the following areas: (a) security in logistics and supply chains; (b) anti-piracy; (c) optimisation and simulation for restoring security and safety in case of crisis; (d) using virtual reality/gaming/3D simulation technologies for the development of decision support tools for Health services and (e) Improving security systems integration, interconnectivity and interoperability.

LOOM can contribute to the following:

·         First main topic: Topic SEC-2013.2.4-1 Phase II demonstration programme on logistics and supply chain security.

·         Second main topic: Topic SEC-2013.2.4-2 Non-military protection measures for merchant shipping against piracy – Capability Project or Coordination and Support Action (Coordinating Action).

·         Third main topic: SEC-2013.4.1-3 Development of simulation models and tools for optimising the pre-deployment and deployment of resources and the supply chain in external emergency situations

·         Fourth main topic: SEC-2013.4.1-4 2013.4.1-4 - Development of decision support tools for improving preparedness and response of Health Services involved in emergency situations.

·         Workpackage leader/partner. We can write up a WP if assigned by the consortium leader. We can also contribute to project management.

·         Contact point to UK maritime sector. Can also introduce partners (industry or academia) from UK and the Far East to the consortium should it be needed.

·         Can also get access to a database of emergency situations occurred in non-EU regions, based on marine accidents reported by the IMO and Lloyds Registry, etc

Project ideas


============Project Idea 1: Logistics and supply chain security ============

Description

Logistics and supply chain security:

LOOM has had about 10 years research experiences in logistics and supply chain security assessment, evidenced by three completed PhD research projects (“Risk analysis and decision making of container supply chains”, “the development of safety and security assessment techniques and their application to port operations”, and “enabling security and risk-based operation of container line supply chains under high uncertainties” ).Many security modelling and decision making models have been developed, including the following:

·         A container security score model addressing 10+2 elements.

·         A port security level model.

·         A seafarers reliability model.

·         Formal safety/security assessment of container supply chains.

·         Threat based assessment of container supply chains.

·         Terrorism modelling of container supply chains (e.g. Figure 1).

·         Multiple criteria modelling for security based decision making in container supply chain operations.

·         Quality assurance of port operations using 6-sigma.

·         Optimal operations of maritime/logistic systems in dynamic environments

·         Realistic 3D simulations of complex maritime and logistics systems

The above may be used to contribute to:

·         propose, towards end-to-end supply-chain security, a mechanism for transparent multi-hazard risk assessment.

·         increase the overall security of the supply chains.

·         possible solutions to new risks and threats required to secure supply chains in the future.

·         identify suspicious cargo (people), as early as possible, through the provision of reliable and sufficient data including “who” is shipping “what” to “whom”, “when” and “by which means”.

·         improve supply chain resilience using risk management principles, contingency planning and enhanced real-time reaction capabilities.

·         deliver collateral benefits, especially higher cost effectiveness for transportation and supply chain systems to stakeholders (incl. SME) as an important factor for ensuring broad acceptance.

·         predict possible under-attack scenarios and predict the behaviours of the supply chain when being under attack.

·         provide optimal solutions to deal with broken links in supply chains.

 

 

============Project Idea 2: Non-military protection measures for merchant shipping against piracy ============

 

Description

LOOM has an on-going doctoral research project on maritime piracy modelling in collaboration with the IMO. The research has been conducted since Nov. 2009 and is expected to be completed soon. The project has developed a technical model for investigating how parameters such as ship size, season of the year, ship type, location of the ship, time of the day, visibility, freeboard, speed, good practices, etc. would influence the likelihood of a ship being attacked by pirates (e.g. see Figure 2 of the attached document). The model is also capable of looking at how naval support and available guards would influence the likelihood of the ship being hijacked.

The above work can be used for studying piracy root causes and piracy protection measures, helping protect EU merchant fleets and maritime supply lines from criminal abduction and harassment. Relevant civil stakeholders / end-users should be provided with an exhaustive practical guide on active and passive contemporary optimal measures to counter pirate threats and their legal, economic and societal implications. Advantages and disadvantages of these measures can be highlighted and realistic improvements proposed. Simulation can be used to validate the proposed measures under different realistic scenarios.

In particularly, LOOM research can be used to answer the following questions:

·         Given available data of a specific maritime area and a particular ship, what is the likelihood of the ship being attacked?

·         What would be the best level of support for ships?

·         What to do when being attacked?

·         What to do after being attacked? Best escape route? Best coordination strategy?

 

 

============Project Idea 3: Simulation/optimisation for resources and supply chains in emergency/crisis situations ============

 

Description

Simulation/optimisation for resources/supply chains in external emergency situations:

LOOM has a strong research expertise in optimisation, simulation and security/safety for supply chains. The institution is the work-package leader in two major work-packages of optimisation/simulation in a recent €7m EU project, the work-package leader in another recent €9m EU project on logistics supply chain, and the grant holder of various EPSRC projects on security/safety of supply chains and maritime business processes. LOOM’s research in these areas has been published in top journals in Computer Science such as IEEE Transactions, European Journal of Operational Research and International Journal of Neural systems, etc. The institution also has the UK-only 360-degree ship simulator (see http://www.ljmu.ac.uk/lairdsidemaritimecentre/).

Optimisation, simulation and security/safety for supply chain research in LOOM have always been focused on real-world freight supply chain applications. Recent examples are:

Below are our research ideas:

Supporting freight supply chains to deal with unexpected changes and external emergency situations is an important challenge. Real-time responses may include rescheduling productions/ managements /purchases etc; changing the transport modes; re-allocating resources and rerouting the process flows. Crisis/emergency situations can also be prevented by understanding EU’s external interoperability logistics, anticipating the risks, implementing safety procedures, providing backup plans, and designing robust schedules /plans for the chains. Such responses and anticipations are especially important in multimodal logistics hubs, where goods are collected and distributed.

LOOM research ideas involve providing the above solutions to effectively help (a) anticipate crisis/emergency situations and (b) response to crisis/emergency situations. We focus on container supply chains, especially those connecting multimodal logistics hubs due to that 90% of world goods are containerized. We believe these go in line with the requirements from the EC. 3D simulations of the supply chains and emergency situations will be provided; robust solutions (schedules of activities; layout of facilities and allocation of resources) in anticipation of emergencies will be suggested, and dynamic optimisation solutions (rescheduling, replanning, rerouting, reallocating) in responses to emergencies will be offered.

============Project Idea 4: Using simulation/optimisation for the development of decision support tools for improving preparedness and response of Health services involved in emergency situations ============


Description

LOOM has extensive expertise in developing virtual reality scenarios and 3D simulation of business processes, flows/arrivals/departures of goods/people/vehicles, all in combination with mathematical modelling and optimisation, as shown in our previous and current EU/EPSRC projects.

For this call, we can use virtual reality and 3D gaming technologies to simulate sudden emergency situations, such as disease outbreaks/pandemic/epidemic scenarios or terrorist attacks or war, and their impacts on the health care systems. For example, we can create the followings in virtual environment:

- the spread of the outbreaks

- the increase of patients

- patient flows and changes in patient flows according to the development of the outbreaks

- impacts on healthcare facilities, staffs, medicine stocks etc

From these scenarios, we can identify the possible bottle necks and weak links in the current health care system, and from that using optimisation tools to suggest:

- Optimal schedule

- Facility layout,

- Stocking plan

etc.

LOOM can do the implementation of the software, and provide the optimisation tools. For example, here is the 3D virtual simulation of a small emergency clinic in an outbreak situation:http://www.youtube.com/watch?v=GuuwWh6NH6A .

We will need input from potential partners from the healthcare sectors.

Dr Trung Thanh Nguyen
Dr Trung Thanh Nguyen
LinkedIn logo Lecturer 

LNL Technology Turkey

LNL Technology is a high tech SME based in Ankara Turkey. LNL's main ine of business is in Smart Spaces and Machine To Machine communication. We develop technology for smart sensors, smart actuators, mobile computing and machine to machine interaction. Our main products which are commercially available are smart sensors, actuators and gateways for environmental, agricultural monitoring, smart building, smart cities, energy applications and security.

LNL is actively committed to multi-party and multinational research projects and have completed several research projects resylts of which have been or are being commercialized. Currently, LNL is partner of 2 FP7 and 2 ITEA2/UEREKA projects. 

We are mainly interested in cooperating for FP7 projects under security we can contribute in sensing, sensor data fusion, social sensors, smart infrastructures, smart grids, future internet, M2M networks and trust in M2M networks.

Website:
www.lnl.com.tr
Organisation Type
Mr Faysal Basci
Dir. Of Product Development 
Area of Interest