EuCRF European Centre for Research & Financing Israel

Organisation Type
Professor Zohar Ben-Asher
LinkedIn logo Academic Director 

FL Consult Belgium

Organisation Type
Ms Els Librecht
Area of Interest

FL Consult Belgium

Organisation Type
Ms Florence Legein
Area of Interest

Ghent University, Department of Textiles Belgium

Organisation Type
Professor Paul KIEKENS
Head of Department of Textiles 
Area of Interest

Hisbim A.Ş. Turkey

Our company Hisbim is located in Eskişehir and we were established as an ICT company under Hisarlar Group. HISBIM shows activities both hardware provider and software solutions at IT Sector. HISBIM prepares projects within the context of EU 7th framework program,TUBITAK and TTGV. Hisarlar, our parent company delivers its high quality and performance machinery and equipment, is to help to its customers - who cultivate, harvest, transform and enrich the land - who try to provide a higher quality of life for people, to do their jobs safely and comfortably and use their power and potential more effectively. You can check from our web and and

Organisation Type
Mr Taskin KIZIL
Mr Taskin KIZIL
Area of Interest

ICD-100 a division of ISCA comm.v. Belgium

Organisation Type
Dr Jean-Luc Deflandre
Area of Interest


Organisation Type

IMPEC Netherlands


IMPEC is an international consortium of more than 700 highly motivated professionals from all disciplines, active in 40 countries, that develops and offers proven performance monitoring and evaluation methods for governments. By doing that, transparency and efficiency in the decision-making process are enhanced.


IMPEC offers governments an independent single point of contact that will help them raise the quality of government, contribute to society and increase the public trust level, thus, improving welfare in general. To improve government performance, IMPEC connects scientific thinking, multidisciplinary expertise and community input. As one of many tools, we have developed, offered and implemented performance monitoring and evaluation methods worldwide. We implement our methods for national and local government performance in all policy areas, such as education, health, security and agriculture. We use proven and innovative methodologies, including social and new media. Based on our experience we are convinced that collaborating in a transparent and performance-driven way will lead to more economic development and the capability to deliver a better service level to citizens.


In addition, IMPEC offers advice, expertise and services in the fields of policy matters, project financing, project management, research, monitoring and evaluation, communication and training.

The IMPEC form a dedicated project team, consisting of leading experts in their own fields. That allows us to employ a unique method to every policy area and each specific assignment. They effectively produce the desired research and analyses, give advice and empower the government professionals to improve their collective performance.

Our headquarters are located in The Hague (The Netherlands), city of peace and justice and ‘Legal capital of the world’, as the former Secretary‐General of the United Nations Boutros Boutros ‐ Ghali called it. The Head office is run by IMPEC founder Carlo Bakker and a team of highly motivated professionals.

IMPEC is always interested in meeting potential partners that would like to offer complementary expertise and explore fruitful partnerships.

Organisation Type
Mr Carlo Bakker
Area of Interest
Miss Ivelina Koleva
Project officer 
Area of Interest
Dr Arne Musch
Area of Interest

Life Supporting Technologies Spain

Life Supporting Technologies (LifeSTech) is a research, development and innovation group, belonging to the Universidad Politécnica de Madrid (UPM) and dedicated to design, development and evaluation of services and applications based on ICT (Information and Communication Technologies), in order to create and promote new ideas, methods and technological solutions in every aspect of the value chain of organizations. We develop methods and technological solutions in the areas of:
  • e-Health
  • e-Inclusion
  • e-Learning
  • e-Government
The UPM, is one of the largest universities in Europe. UPM conducts leading technological research in multiple fields. We are one of the largest e-Health research centers in Spain and maintain partnerships within the public and private sectors in the areas of research and development. Over the last fifteen years, we have participated in more than thirty European projects funded by several EU Research Programs (AIM, RACE, TIDE, BRITE, Telematics Applications, eTEN, Leonardo, Quality of Life and IST), as well as in many projects funded by the Spanish Research Council and the R&D Program of the Madrid Community. We are also sponsored by a variety of private Spanish and European companies.
Mr Matteo Pastorino
LinkedIn logo Researcher 
Area of Interest

Liverpool Logistics Offshore and Marine Research Institute (LOOM) United Kingdom

The LOOM Research Institute within Liverpool John Moores University (LJMU) has 12 academic staff and 25 researchers. LOOM has developed a strong reputation for its safety, security, simulation and optimisation research of maritime system design and operation.

LOOM has completed a number of research projects supported by the UK research councils (eg. EPSRC), HSE, EU and industry. It is equipped with the UK’s only 360 degree ship simulator and a wide range of risk modelling and decision making software. For the last ten years, the Institute has received the funding of multi-million pounds to conduct its high-level research and consequently, over 100 technical papers in relevant areas have been produced. The research applications have also been facilitated by the collaboration between LOOM and many industrial and regulatory organisations including Shell and UK HSE. The institute is the coordinator of one EU Marie Curie project, the workpackage leaders of two ongoing EU projects, and grant holders of many other UK research council projects.

Collaboration interests:


We are interested in collaborations with research partners in the following areas: (a) security in logistics and supply chains; (b) anti-piracy; (c) optimisation and simulation for restoring security and safety in case of crisis; (d) using virtual reality/gaming/3D simulation technologies for the development of decision support tools for Health services and (e) Improving security systems integration, interconnectivity and interoperability.

LOOM can contribute to the following:

·         First main topic: Topic SEC-2013.2.4-1 Phase II demonstration programme on logistics and supply chain security.

·         Second main topic: Topic SEC-2013.2.4-2 Non-military protection measures for merchant shipping against piracy – Capability Project or Coordination and Support Action (Coordinating Action).

·         Third main topic: SEC-2013.4.1-3 Development of simulation models and tools for optimising the pre-deployment and deployment of resources and the supply chain in external emergency situations

·         Fourth main topic: SEC-2013.4.1-4 2013.4.1-4 - Development of decision support tools for improving preparedness and response of Health Services involved in emergency situations.

·         Workpackage leader/partner. We can write up a WP if assigned by the consortium leader. We can also contribute to project management.

·         Contact point to UK maritime sector. Can also introduce partners (industry or academia) from UK and the Far East to the consortium should it be needed.

·         Can also get access to a database of emergency situations occurred in non-EU regions, based on marine accidents reported by the IMO and Lloyds Registry, etc

Project ideas

============Project Idea 1: Logistics and supply chain security ============


Logistics and supply chain security:

LOOM has had about 10 years research experiences in logistics and supply chain security assessment, evidenced by three completed PhD research projects (“Risk analysis and decision making of container supply chains”, “the development of safety and security assessment techniques and their application to port operations”, and “enabling security and risk-based operation of container line supply chains under high uncertainties” ).Many security modelling and decision making models have been developed, including the following:

·         A container security score model addressing 10+2 elements.

·         A port security level model.

·         A seafarers reliability model.

·         Formal safety/security assessment of container supply chains.

·         Threat based assessment of container supply chains.

·         Terrorism modelling of container supply chains (e.g. Figure 1).

·         Multiple criteria modelling for security based decision making in container supply chain operations.

·         Quality assurance of port operations using 6-sigma.

·         Optimal operations of maritime/logistic systems in dynamic environments

·         Realistic 3D simulations of complex maritime and logistics systems

The above may be used to contribute to:

·         propose, towards end-to-end supply-chain security, a mechanism for transparent multi-hazard risk assessment.

·         increase the overall security of the supply chains.

·         possible solutions to new risks and threats required to secure supply chains in the future.

·         identify suspicious cargo (people), as early as possible, through the provision of reliable and sufficient data including “who” is shipping “what” to “whom”, “when” and “by which means”.

·         improve supply chain resilience using risk management principles, contingency planning and enhanced real-time reaction capabilities.

·         deliver collateral benefits, especially higher cost effectiveness for transportation and supply chain systems to stakeholders (incl. SME) as an important factor for ensuring broad acceptance.

·         predict possible under-attack scenarios and predict the behaviours of the supply chain when being under attack.

·         provide optimal solutions to deal with broken links in supply chains.



============Project Idea 2: Non-military protection measures for merchant shipping against piracy ============



LOOM has an on-going doctoral research project on maritime piracy modelling in collaboration with the IMO. The research has been conducted since Nov. 2009 and is expected to be completed soon. The project has developed a technical model for investigating how parameters such as ship size, season of the year, ship type, location of the ship, time of the day, visibility, freeboard, speed, good practices, etc. would influence the likelihood of a ship being attacked by pirates (e.g. see Figure 2 of the attached document). The model is also capable of looking at how naval support and available guards would influence the likelihood of the ship being hijacked.

The above work can be used for studying piracy root causes and piracy protection measures, helping protect EU merchant fleets and maritime supply lines from criminal abduction and harassment. Relevant civil stakeholders / end-users should be provided with an exhaustive practical guide on active and passive contemporary optimal measures to counter pirate threats and their legal, economic and societal implications. Advantages and disadvantages of these measures can be highlighted and realistic improvements proposed. Simulation can be used to validate the proposed measures under different realistic scenarios.

In particularly, LOOM research can be used to answer the following questions:

·         Given available data of a specific maritime area and a particular ship, what is the likelihood of the ship being attacked?

·         What would be the best level of support for ships?

·         What to do when being attacked?

·         What to do after being attacked? Best escape route? Best coordination strategy?



============Project Idea 3: Simulation/optimisation for resources and supply chains in emergency/crisis situations ============



Simulation/optimisation for resources/supply chains in external emergency situations:

LOOM has a strong research expertise in optimisation, simulation and security/safety for supply chains. The institution is the work-package leader in two major work-packages of optimisation/simulation in a recent €7m EU project, the work-package leader in another recent €9m EU project on logistics supply chain, and the grant holder of various EPSRC projects on security/safety of supply chains and maritime business processes. LOOM’s research in these areas has been published in top journals in Computer Science such as IEEE Transactions, European Journal of Operational Research and International Journal of Neural systems, etc. The institution also has the UK-only 360-degree ship simulator (see

Optimisation, simulation and security/safety for supply chain research in LOOM have always been focused on real-world freight supply chain applications. Recent examples are:

Below are our research ideas:

Supporting freight supply chains to deal with unexpected changes and external emergency situations is an important challenge. Real-time responses may include rescheduling productions/ managements /purchases etc; changing the transport modes; re-allocating resources and rerouting the process flows. Crisis/emergency situations can also be prevented by understanding EU’s external interoperability logistics, anticipating the risks, implementing safety procedures, providing backup plans, and designing robust schedules /plans for the chains. Such responses and anticipations are especially important in multimodal logistics hubs, where goods are collected and distributed.

LOOM research ideas involve providing the above solutions to effectively help (a) anticipate crisis/emergency situations and (b) response to crisis/emergency situations. We focus on container supply chains, especially those connecting multimodal logistics hubs due to that 90% of world goods are containerized. We believe these go in line with the requirements from the EC. 3D simulations of the supply chains and emergency situations will be provided; robust solutions (schedules of activities; layout of facilities and allocation of resources) in anticipation of emergencies will be suggested, and dynamic optimisation solutions (rescheduling, replanning, rerouting, reallocating) in responses to emergencies will be offered.

============Project Idea 4: Using simulation/optimisation for the development of decision support tools for improving preparedness and response of Health services involved in emergency situations ============


LOOM has extensive expertise in developing virtual reality scenarios and 3D simulation of business processes, flows/arrivals/departures of goods/people/vehicles, all in combination with mathematical modelling and optimisation, as shown in our previous and current EU/EPSRC projects.

For this call, we can use virtual reality and 3D gaming technologies to simulate sudden emergency situations, such as disease outbreaks/pandemic/epidemic scenarios or terrorist attacks or war, and their impacts on the health care systems. For example, we can create the followings in virtual environment:

- the spread of the outbreaks

- the increase of patients

- patient flows and changes in patient flows according to the development of the outbreaks

- impacts on healthcare facilities, staffs, medicine stocks etc

From these scenarios, we can identify the possible bottle necks and weak links in the current health care system, and from that using optimisation tools to suggest:

- Optimal schedule

- Facility layout,

- Stocking plan


LOOM can do the implementation of the software, and provide the optimisation tools. For example, here is the 3D virtual simulation of a small emergency clinic in an outbreak situation: .

We will need input from potential partners from the healthcare sectors.

Dr Trung Thanh Nguyen
Dr Trung Thanh Nguyen
LinkedIn logo Lecturer