Dr Bohdan Naumienko Poland

Just to know more about my company and me, please see e.g.

http://www.atvn-eu-gp.pl/broker/resource/bohdan_naumienko.pdf

http://www.b2match.eu/setplan2010/participants/124/

Dr Bohdan Naumienko
Global ONE Ltd.
Director of International Projects Department  
Area of Interest

Dr Elena Nechita Romania

“Vasile Alecsandri” University of Bacău is a medium sized public university, located in Bacău, the capital of Bacău County, in the North-East region of Romania. Since 1961, the university has progressively developed and carried on a tradition in the fields of education and research. With over 6,000 students and about 250 academic staff, the University is now structured as follows: five faculties (Engineering, Letters, Sciences, Economic Sciences, and Faculty of Movement, Sports and Health Sciences), five departments (Teacher Training, Professional Counselling, Technological Transfer, Innovation and Artistic Creation, Distance Learning, and Management), Office of International Relations and Community Programmes.

“Vasile Alecsandri” University of Bacău has been certified in the Quality Management System for bachelor, master, and doctoral education, for scientific research, technological transfer and counselling since 2007. Since December 2010, the Integrated Management System was certified as follows:  SR EN ISO 9001:2008, SR EN ISO 14001:2005, SR OH SAS 18001:2008 and SA 8000.

Website:
www.ub.ro
Organisation Type
Vasile Alecsandri University of Bacau
Associate Professor 
Area of Interest

Dr Trung Thanh Nguyen United Kingdom

The LOOM Research Institute within Liverpool John Moores University (LJMU) has 12 academic staff and 25 researchers. LOOM has developed a strong reputation for its safety, security, simulation and optimisation research of maritime system design and operation.

LOOM has completed a number of research projects supported by the UK research councils (eg. EPSRC), HSE, EU and industry. It is equipped with the UK’s only 360 degree ship simulator and a wide range of risk modelling and decision making software. For the last ten years, the Institute has received the funding of multi-million pounds to conduct its high-level research and consequently, over 100 technical papers in relevant areas have been produced. The research applications have also been facilitated by the collaboration between LOOM and many industrial and regulatory organisations including Shell and UK HSE. The institute is the coordinator of one EU Marie Curie project, the workpackage leaders of two ongoing EU projects, and grant holders of many other UK research council projects.

Collaboration interests:

 

We are interested in collaborations with research partners in the following areas: (a) security in logistics and supply chains; (b) anti-piracy; (c) optimisation and simulation for restoring security and safety in case of crisis; (d) using virtual reality/gaming/3D simulation technologies for the development of decision support tools for Health services and (e) Improving security systems integration, interconnectivity and interoperability.

LOOM can contribute to the following:

·         First main topic: Topic SEC-2013.2.4-1 Phase II demonstration programme on logistics and supply chain security.

·         Second main topic: Topic SEC-2013.2.4-2 Non-military protection measures for merchant shipping against piracy – Capability Project or Coordination and Support Action (Coordinating Action).

·         Third main topic: SEC-2013.4.1-3 Development of simulation models and tools for optimising the pre-deployment and deployment of resources and the supply chain in external emergency situations

·         Fourth main topic: SEC-2013.4.1-4 2013.4.1-4 - Development of decision support tools for improving preparedness and response of Health Services involved in emergency situations.

·         Workpackage leader/partner. We can write up a WP if assigned by the consortium leader. We can also contribute to project management.

·         Contact point to UK maritime sector. Can also introduce partners (industry or academia) from UK and the Far East to the consortium should it be needed.

·         Can also get access to a database of emergency situations occurred in non-EU regions, based on marine accidents reported by the IMO and Lloyds Registry, etc

Project ideas


============Project Idea 1: Logistics and supply chain security ============

Description

Logistics and supply chain security:

LOOM has had about 10 years research experiences in logistics and supply chain security assessment, evidenced by three completed PhD research projects (“Risk analysis and decision making of container supply chains”, “the development of safety and security assessment techniques and their application to port operations”, and “enabling security and risk-based operation of container line supply chains under high uncertainties” ).Many security modelling and decision making models have been developed, including the following:

·         A container security score model addressing 10+2 elements.

·         A port security level model.

·         A seafarers reliability model.

·         Formal safety/security assessment of container supply chains.

·         Threat based assessment of container supply chains.

·         Terrorism modelling of container supply chains (e.g. Figure 1).

·         Multiple criteria modelling for security based decision making in container supply chain operations.

·         Quality assurance of port operations using 6-sigma.

·         Optimal operations of maritime/logistic systems in dynamic environments

·         Realistic 3D simulations of complex maritime and logistics systems

The above may be used to contribute to:

·         propose, towards end-to-end supply-chain security, a mechanism for transparent multi-hazard risk assessment.

·         increase the overall security of the supply chains.

·         possible solutions to new risks and threats required to secure supply chains in the future.

·         identify suspicious cargo (people), as early as possible, through the provision of reliable and sufficient data including “who” is shipping “what” to “whom”, “when” and “by which means”.

·         improve supply chain resilience using risk management principles, contingency planning and enhanced real-time reaction capabilities.

·         deliver collateral benefits, especially higher cost effectiveness for transportation and supply chain systems to stakeholders (incl. SME) as an important factor for ensuring broad acceptance.

·         predict possible under-attack scenarios and predict the behaviours of the supply chain when being under attack.

·         provide optimal solutions to deal with broken links in supply chains.

 

 

============Project Idea 2: Non-military protection measures for merchant shipping against piracy ============

 

Description

LOOM has an on-going doctoral research project on maritime piracy modelling in collaboration with the IMO. The research has been conducted since Nov. 2009 and is expected to be completed soon. The project has developed a technical model for investigating how parameters such as ship size, season of the year, ship type, location of the ship, time of the day, visibility, freeboard, speed, good practices, etc. would influence the likelihood of a ship being attacked by pirates (e.g. see Figure 2 of the attached document). The model is also capable of looking at how naval support and available guards would influence the likelihood of the ship being hijacked.

The above work can be used for studying piracy root causes and piracy protection measures, helping protect EU merchant fleets and maritime supply lines from criminal abduction and harassment. Relevant civil stakeholders / end-users should be provided with an exhaustive practical guide on active and passive contemporary optimal measures to counter pirate threats and their legal, economic and societal implications. Advantages and disadvantages of these measures can be highlighted and realistic improvements proposed. Simulation can be used to validate the proposed measures under different realistic scenarios.

In particularly, LOOM research can be used to answer the following questions:

·         Given available data of a specific maritime area and a particular ship, what is the likelihood of the ship being attacked?

·         What would be the best level of support for ships?

·         What to do when being attacked?

·         What to do after being attacked? Best escape route? Best coordination strategy?

 

 

============Project Idea 3: Simulation/optimisation for resources and supply chains in emergency/crisis situations ============

 

Description

Simulation/optimisation for resources/supply chains in external emergency situations:

LOOM has a strong research expertise in optimisation, simulation and security/safety for supply chains. The institution is the work-package leader in two major work-packages of optimisation/simulation in a recent €7m EU project, the work-package leader in another recent €9m EU project on logistics supply chain, and the grant holder of various EPSRC projects on security/safety of supply chains and maritime business processes. LOOM’s research in these areas has been published in top journals in Computer Science such as IEEE Transactions, European Journal of Operational Research and International Journal of Neural systems, etc. The institution also has the UK-only 360-degree ship simulator (see http://www.ljmu.ac.uk/lairdsidemaritimecentre/).

Optimisation, simulation and security/safety for supply chain research in LOOM have always been focused on real-world freight supply chain applications. Recent examples are:

Below are our research ideas:

Supporting freight supply chains to deal with unexpected changes and external emergency situations is an important challenge. Real-time responses may include rescheduling productions/ managements /purchases etc; changing the transport modes; re-allocating resources and rerouting the process flows. Crisis/emergency situations can also be prevented by understanding EU’s external interoperability logistics, anticipating the risks, implementing safety procedures, providing backup plans, and designing robust schedules /plans for the chains. Such responses and anticipations are especially important in multimodal logistics hubs, where goods are collected and distributed.

LOOM research ideas involve providing the above solutions to effectively help (a) anticipate crisis/emergency situations and (b) response to crisis/emergency situations. We focus on container supply chains, especially those connecting multimodal logistics hubs due to that 90% of world goods are containerized. We believe these go in line with the requirements from the EC. 3D simulations of the supply chains and emergency situations will be provided; robust solutions (schedules of activities; layout of facilities and allocation of resources) in anticipation of emergencies will be suggested, and dynamic optimisation solutions (rescheduling, replanning, rerouting, reallocating) in responses to emergencies will be offered.

============Project Idea 4: Using simulation/optimisation for the development of decision support tools for improving preparedness and response of Health services involved in emergency situations ============


Description

LOOM has extensive expertise in developing virtual reality scenarios and 3D simulation of business processes, flows/arrivals/departures of goods/people/vehicles, all in combination with mathematical modelling and optimisation, as shown in our previous and current EU/EPSRC projects.

For this call, we can use virtual reality and 3D gaming technologies to simulate sudden emergency situations, such as disease outbreaks/pandemic/epidemic scenarios or terrorist attacks or war, and their impacts on the health care systems. For example, we can create the followings in virtual environment:

- the spread of the outbreaks

- the increase of patients

- patient flows and changes in patient flows according to the development of the outbreaks

- impacts on healthcare facilities, staffs, medicine stocks etc

From these scenarios, we can identify the possible bottle necks and weak links in the current health care system, and from that using optimisation tools to suggest:

- Optimal schedule

- Facility layout,

- Stocking plan

etc.

LOOM can do the implementation of the software, and provide the optimisation tools. For example, here is the 3D virtual simulation of a small emergency clinic in an outbreak situation:http://www.youtube.com/watch?v=GuuwWh6NH6A .

We will need input from potential partners from the healthcare sectors.

Dr Trung Thanh Nguyen
Liverpool Logistics Offshore and Marine Research Institute (LOOM)
LinkedIn logo Lecturer 

Dr Metin Nil Turkey

The VESTEL group of companies engage in research and product development, manufacturing, sales and marketing in the consumer electronics, white goods and digital product segments with an expertise in embedded systems design,implementation, testing, integration and manufacturing on consumer electronics, information & communication technologies, digital broadcast receiving technologies, electronic media and networking. VESTEL includes a variety of products to its customers including but not limited to LCD, PVR, IPTV, Hotel TV, DVD Players/Recorders, PVR box, DVB-T and DVB-S set-top boxes, wireless products, home network systems, notebook PCs and household appliances.

VESTEL Electronics is the flag ship of the group of companies and the largest consumer electronics ODM/OEM company in Europe by employing 6000 people and total revenues of € 2.67 billion. One of the biggest forces powering VESTEL’s rapid advance towards becoming a global giant through the technologies that it develops its R&D activities are carried out with approx. 500 experts in 10 national and international research and development centers. The primary focus of R&D activities is related to platform digitalization, high-definition, mobility and connectivity.


VESTEL’s research fields cover a number of Strategic  research Agenda items from Eurepean Technology Platforms (ICT, Networked Media and Consumer Electronics).

VESTEL collaborates to investigate new technologies and new consumer trends in collaborations with universities and research institutions, transforming this research into modules, systems, and products that qualify as internationally licensable and patentable intellectual property rights.

For information about Vestel, please visit www.vestel.com

AREAS OF R&D COOPERATION 

 Consumer Electronics(TFT TV, STB...), IT products, Smart Home products.

  • HW
  • SW
  • Test and verification
  • Implementation
Organisation Type
Vestel Electronics
R&D Manager 
Area of Interest

Anette Norborg Spain

http://www.deusto.es/servlet/Satellite/Page/1244029462706/_ingl/%231227879422943%231244029462706/cx/UniversidadDeusto/Page/PaginaCollTemplate

Website:
www.deusto.es
Organisation Type
University of Deusto
Project Manager 

Professor Ali Kemal Okyay Turkey

Organisation Type
Bilkent Univ
Area of Interest

Professor Anna Olejniczuk-Merta Poland

Kozminski University, located in Warsaw, Poland, founded in 1993, is a private institution of higher education with full academic rights. Kozminski University is classified in the prestigious educational rankings provided by the ‘Financial Times’ – Business School rankings, which include the best universities from around the world. Kozminski University holds three international accreditations: EQUIS, AMBA and AACSB.The University holds the rights to award doctoral degrees in three disciplines: management, economics and law. Morover, it has the power to authorize a higher Ph.D. degree (habilitation degree) in the discipline of management and economics.

Organisation Type
Professor Anna Olejniczuk-Merta
Kozminski University
profesor 
Area of Interest

Dr Yashar Omarov Azerbaijan

Organisation Type
Baku State University
Vice-Dean of the Faculty of Biology 
Area of Interest

Mr Oytun Orhan Turkey

ORSAM (Center for Middle Eastern Strategic Studies)
Researcher 

Professor Emrah Orhun Turkey

Izmir University (IZU) was established by Doğanata Education and Culture Foundation in 2007 as the third foundation university in Izmir. IZU currently offers undergraduate and graduate programs in the following academic units:

FACULTIES 

FACULTY OF ARTS AND SCIENCES 

  • English Language Teaching
  • Mathematics and Computer Sciences
  • Psychology

  

FACULTY OF LAW 

  • Law

 

FACULTY OF ECONOMICS AND ADMINISTRATIVE SCIENCES (Medium of instruction is English)

  • Business Administration
  • International Relations
  • International Trade and Finance
  • Political Science and Public Administration

FACULTY OF ENGINEERING (Medium of instruction is English)

  • Computer Engineering
  • Electronics and Communication Engineering
  • Industrial Engineering
  • Software Engineering

FACULTY OF ARCHITECTURE (Medium of instruction is English)

  • Interior Architecture and Environmental Design
  • Architecture

FACULTY OF MEDICINE 

GRADUATE SCHOOLS

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

  • Computer Engineering (MSc, PhD)
  • Mathematics and Computer Sciences

GRADUATE SCHOOL OF SOCIAL SCIENCES

  • Law and Economics
  • Business Administration (MBA)  

Internationalization is part of IZU’s founding strategy and great importance is attached to the promotion of the Erasmus Program, implementation of Bologna Process and enhancement of European Education and Research Areas. The International Relations Office (IRO) has been established in 2009 to coordinate internalization efforts. IZU received its Erasmus Charter in 2010. Since then, our international network and partnerships have grown quite rapidly reaching 33 cooperation protocols with agreements for student/staff mobility.

Organisation Type
İzmir University
Area of Interest